Quinine inhibits Ca2+ -independent K+ channels whereas tetraethylammonium inhibits Ca2+ -activated K+ channels in insulin-secreting cells
نویسندگان
چکیده
منابع مشابه
Role of Ca2+-activated K+ channels in human erythrocyte apoptosis.
Exposure of erythrocytes to the Ca2+ ionophore ionomycin has recently been shown to induce cell shrinkage, cell membrane blebbing, and breakdown of phosphatidylserine asymmetry, all features typical of apoptosis of nucleated cells. Although breakdown of phosphatidylserine asymmetry is thought to result from activation of a Ca2+-sensitive scramblase, the mechanism and role of cell shrinkage have...
متن کاملSelectivity filter gating in large-conductance Ca2+-activated K+ channels
Membrane voltage controls the passage of ions through voltage-gated K (K(v)) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open...
متن کاملCa2+-activated K+ channels: from protein complexes to function.
Molecular research on ion channels has demonstrated that many of these integral membrane proteins associate with partner proteins, often versatile in their function, or even assemble into stable macromolecular complexes that ensure specificity and proper rate of the channel-mediated signal transduction. Calcium-activated potassium (K(Ca)) channels that link excitability and intracellular calciu...
متن کاملRedox modulation of hslo Ca2+-activated K+ channels.
The modulation of ion channel proteins by cellular redox potential has emerged recently as a significant determinant of channel function. We have investigated the influence of sulfhydryl redox reagents on human brain Ca2+-activated K+ channels (hslo) expressed in both human embryonic kidney 293 cells and Xenopus oocytes using macropatch and single-channel analysis. Intracellular application of ...
متن کاملSmall conductance Ca2+-activated K+ channels and calmodulin.
Small conductance Ca(2+)-activated K(+) channels (SK channels) contribute to the long lasting afterhyperpolarization (AHP) that follows an action potential in many central neurones. The biophysical and pharmacological attributes of cloned SK channels strongly suggest that one or more of them underlie the medium component of the AHP that regulates interspike interval and plays an important role ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEBS Letters
سال: 1985
ISSN: 0014-5793
DOI: 10.1016/0014-5793(85)80729-8